
Taking up development
of existing research
codes

Dr. Spiridon Siouris
s.siouris@sheffield.ac.uk
Low Carbon Combustion Centre (LCCC), Mechanical
Engineering

mailto:s.siouris@sheffield.ac.uk

2

• My background
• Issues with developing software for a research

project
• How to quickly get familiarised with a coding

project
• Good programming practises
• Holistic view on optimisation
• Summary

30/01/2019© The University of Sheffield

Contents

3

My background

• Research fellow in fluids (Mech.Eng.)
• Worked on several projects in Low

Carbon Combustion Centre and
Aerodynamics groups such as:

– Modelling of fuel deposition in gas
turbine injectors (FINCAP)

– Modelling of fuel and lubricant
thermo-chemical degradation in
gas turbine systems

– Aerodynamics, active flow control
and plasma modelling

30/01/2019© The University of Sheffield

4

• No formal CS education, but I like:
– Computers/Programming/HPC
– Tidy and efficient things
– Adhering to standards

• Lots of experience in software development for
modelling fluids and/or chemical reacting flows
over many years

30/01/2019© The University of Sheffield

My background

5

• Great opportunities for developing very
interesting software, but…

• Projects often start late
• Results driven – the quicker the better and no

questions asked!

• Often written by researchers where programming
is not part of their formal education or primary
focus

• PI’s usually not involved at programming level to
provide input

30/01/2019© The University of Sheffield

Software in academia

6

Software in academia

• Aim to generate results often leading to quick and
dirty programming!

• Software generated without adhering to good
programming practises

• Code is passed on from one researcher to another

• Elements are added on and on without any
restructuring of code

30/01/2019© The University of Sheffield

7

Software in academia

• Lots of software generated with
high impact, but:

– Time is lost figuring out what
various things do in the
software

– Can end up with several
versions of the same software
but very little information, if
lucky!

– Not written in the best way…

• Principle of least astonishment
https://en.wikipedia.org/wiki/Princ
iple_of_least_astonishment

30/01/2019© The University of Sheffield

8

Software in academia

• Lots of software generated with
high impact, but:

– Time is lost figuring out what
various things do in the
software

– Can end up with several
versions of the same software
but very little information, if
lucky!

– Not written in the best way…

• Principle of least astonishment
https://en.wikipedia.org/wiki/Princ
iple_of_least_astonishment

30/01/2019© The University of Sheffield

9

Getting to know a
project

● Look at a random source file. How is the
formatting/coding? Did people take care? Is it easy
to understand?

30/01/2019© The University of Sheffield

10

Getting to know a
project

● Compile to check coding errors/warnings using:
– gcc -Wall -Wextra -Wpedantic

● Run and check for memory leaks using:
– valgrind --leak-check=full

● Generate documentation using:
– doxygen

– Suitable for C/C++, Fortran, bash, python, Java, TCL

– Visualise relations between functions

– Navigate around parts of code with hyperlinks

– Can output HTML, pdf
30/01/2019© The University of Sheffield

11

Getting to know a
project

30/01/2019© The University of Sheffield

12

Getting to know a
project - summary

1.Have a look at a few source files

2.Compile with all warnings on

3.Run with memory checker

4.Generate documentation

30/01/2019© The University of Sheffield

13

Working on a project

1.Backup what you receive (ie
projectname_date.tar.gz)

2.Set up source code version control (I like git)

3.Backup again

4.Ground rules. Discuss with PI or main developer
the extent of your input (ie what is your freedom to
change code beyond your scope?)

5.Be kind and avoid: ``Code is rubbish and needs
major work’’!

30/01/2019© The University of Sheffield

14

Working on a project

6.Carry on with your coding work

7.If you see anything that needs changing, then
change it! (ie variables, functions, data structures)

8.Use GCC during development, and Intel for
production
● Intel is good for compilation and running speed,

but supports non standard features – not
portable!

● GCC is good for errors and warnings, but slower
than Intel (not by much though!) - portable!

30/01/2019© The University of Sheffield

15

Good programming
practises

● Naming variables
— Should be clear and meaningful without

ambiguity (and don’t try to be funny)
— No coded variables
— Should not need any comments
— Searchable, ie no single-letter variables
— Length of name should roughly correspond to the

size of its scope

30/01/2019© The University of Sheffield

16

Good programming
practises

30/01/2019© The University of Sheffield

17

Good programming
practises

● Functions
— The shorter the better
— Two to three arguments but no more
— Do one thing
— No side effects
— Error handling
— Should always test in isolation

30/01/2019© The University of Sheffield

18

Good programming
practises

30/01/2019© The University of Sheffield

19

Good programming
practises

30/01/2019© The University of Sheffield

20

Good programming
practises

● Commenting
— Use with caution
— Better to improve naming of functions, data

variables than to rely on comments
— Useful for citing articles, algorithm names, etc.

where appropriate
— Watch out for line length. Do not assume

everyone has a large wide screen monitor

30/01/2019© The University of Sheffield

21

Good programming
practises

30/01/2019© The University of Sheffield

22

Good programming
practises

● Further reading:
— Oliveira S., Stewart D., 2006,

Writing scientific software. A
guide to good style,
Cambridge University press

— Martin R. C., 2013, Clean
code, A handbook of agile
software craftmanship,
Prentice Hall

— Ortiz P. F., 2018, First steps in
scientific programming,
Amazon

30/01/2019© The University of Sheffield

23

Good programming
practises

● Further reading
— Ledgard H., Green R., Coding guidelines: Finding

the art in the science, ACM queue, 2011
— ASTG coding standard, Recommended coding

styles for software development in Fortran, C++,
Java, and Python, Ver. 1.7, 2015

30/01/2019© The University of Sheffield

24

Good programming
practises

● Further reading for C/C++
— NASA C style guide, August 1994, SEL-94-003
— SEI CERT C coding standard, Rules for developing

safe, reliable and secure systems in C++, 2016
— SEI CERT C++ coding standard, Rules for

developing safe, reliable and secure systems in C+
+, 2016

— High integrity C++ Coding Rules, Programming
Research Ltd., www.codingstandard.com

— Joint strike fighter air vehicle C++ coding
standards for the system development and
demonstration program, December 2005

30/01/2019© The University of Sheffield

http://www.codingstandard.com/

25

Good programming
practises

● Further reading for Fortran
— Fortran coding standards for new JULES code, Joint

UK land environment simulator, June 2010
— European standards for writing and documentign

exchangeable Fortran 90 code, Ver. 1.1, Andrews
P., 1995

30/01/2019© The University of Sheffield

26

Optimising code

● Very subjective and debatable topic

● Done to save time and computational resources

● Which one are you most interested in saving?

● Scrutinise every advice you receive, including mine

● Work out what is best for you

● Let’s start with a quote...

30/01/2019© The University of Sheffield

27

Optimising code

The real problem is that programmers have
spent far too much time worrying about
efficiency in the wrong places and at the
wrong times; premature optimization is the
root of all evil (or at least most of it) in
programming.

Knuth D., 1974, Computer Programming as an Art, Communications
of the ACM, Vol. 17, No. 12

30/01/2019© The University of Sheffield

28

Optimising code

● Rule No. 1: Code optimisation should be the last
thing you should do.
— More important to adhere to good programming

practises
— Make sure code is as scalable as possible
— Find something else to optimise in your workflow

● Rule No. 2: If you need to do it, use proper
evidence for it
— No data – no optimising
— Use profilers for performance analysis, eg gprof

for single-core, and/or tau for multi-core
30/01/2019© The University of Sheffield

29

Optimising code

● Example of a typical week of mine:

● What is taking up most of my time?

● Does it make sense for me to put effort to speed
up HPC running?

● How about your workflow?

30/01/2019© The University of Sheffield

Research: Modelling and coding (no optimising)
Figuring out what parts of code do
Resarch: Papers, grants, other
Meetings
Admin
HPC running (including setting up)
Postprocessing

30

Optimising code

● Better for me to spend time on:
— Making the code more understandable - Good

programming practises!
— Automating post processing

● Organising order of tasks is very important too as
simulations can be running in the background
— Is it possible to submit a job before a 2 hour

meeting? If so, 2 hours saved!

30/01/2019© The University of Sheffield

31

Before optimising code

● Make sure the code is correct and bug free

● Make it portable

● Are the algorithms numerically stable/fast? What is
the latest literature?

● Use libraries as much as possible as they are (most
likely) already efficient – no point reinventing the
wheel

30/01/2019© The University of Sheffield

32

Before optimising code

● Do you have a table with a design of experiments?

● Are the simulations run with the correct settings,
boundary conditions, etc?

● Is the time/space discretisation suitable enough?,
and do you really need a 1M cell mesh?

● After having checked all the above, then….

30/01/2019© The University of Sheffield

33

Optimising code
● Learn (briefly) how CPU’s work, eg

registers, cache

● Too many techniques to list here

● Very good read (old, but still useful)
— Severance C. and Dowd K., High performance

computing (RISC architectures, optimization and
benchmarks), 2nd ed., O’Reilly, 1998

— Or even look at anything from the early days of
game programming, LAPACK, BLAS, etc where
every kB of memory and CPU cycles matters!

● Plenty other references exist that are
more recent, but the core knowledge
remains the same

30/01/2019© The University of Sheffield

34

Optimising code

● Profile first to generate data and then optimise the
most time consuming parts of the code

30/01/2019© The University of Sheffield

35

Optimising code

30/01/2019© The University of Sheffield

36

Optimising code

● Optimise with focus on memory as well as CPU
cycles and communication between cores

● Memory is not cheap and can get consumed very
easily if not careful

30/01/2019© The University of Sheffield

Chellappa S., Franchetti F.,
Puschel M., 2008, How to write fast
numerical code: A small
introduction, Generative and
Transformational Techniques in
Software Engineering II:
International Summer School,
GTTSE 2007, Braga, Portugal, July
2-7, 2007.

37

Summary
● Try and write quality code with focus on being:

— Readable, simple, and therefore maintainable

— Correct, error/warning free

— Portable

— Stable

— Can handle errors where most likely to occur

● Optimise your whole workflow, and lastly work on
speeding up your code

● If you optimise be careful not to speed-up at the
expense of code quality

● Good luck!

30/01/2019© The University of Sheffield

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

